Simulating whole-body vibration for neonatal patients on a tire-coupled road simulator

Author:

Kehoe Patrick12ORCID,Gibb Keely1ORCID,Hurley Jason1,Langlois Robert G1,Green James R3,Chan Adrian DC3,Toma Elton2,Aubertin Cheryl4,Greenwood Kim4,Ibey Andrew34,Redpath Stephanie4

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada

2. National Research Council Canada, Ottawa, ON, Canada

3. Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada

4. Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada

Abstract

Exposure to excessive whole-body vibration is linked to health issues and may result in increased rates of mortality and morbidity in infants. Newborn infants requiring specialized treatment at neonatal intensive care units often require transportation by road ambulance to specialized care centers, exposing the infants to potentially harmful vibration and noise. A standardized Neonatal Patient Transport System (NPTS) has been deployed in Ontario, Canada, that provides life saving equipment to patients and safe operation for the clinical care staff. However, there is evidence that suggests patients may experience a higher amplitude of vibration at certain frequencies when compared with the vehicle vibration. In a multi-year collaborative project, we seek to create a standardized test procedure to evaluate the levels of vibration and the effectiveness of mitigation strategies. Previous studies have looked at laboratory vibration testing of a transport system or transport incubator and were limited to single degree of freedom excitation, neglecting the combined effects of rotational motion. This study considers laboratory testing of a full vehicle and patient transport system on an MTS Model 320 Tire-Coupled Road Simulator. The simulation of road profiles and discrete events on a tire-coupled road simulator allows for the evaluation of the vibration levels of the transport system and the exploration of mitigation strategies in a controlled setting. The tire-coupled simulator can excite six degrees-of-freedom motion of the transport system for vibration evaluation in three orthogonal directions including the contributions of the three rotational degrees of freedom. The vibration data measured on the transport system during the tire-coupled testing are compared to corresponding road test data to assess the accuracy of the vibration environment replication. Three runs of the same drive file were conducted during the laboratory testing, allowing the identification of anomalies and evaluation of the repeatability. The tire-coupled full vehicle testing revealed a high level of accuracy in re-creating the road sections and synthesized random profiles. The simulation of high amplitude discrete events, such as speed hump traverses, were highly repeatable, yet yielded less accurate results with respect to the peak amplitudes at the patient. The resulting accelerations collected at the input to the manikin (sensor located under the mattress) matched well between the real-world and road simulator. The sensors used during testing included series 3741B uni-axial and series 356A01 tri-axial accelerometers by PCB Piezotronics. These results indicate a tire-coupled road simulator can be used to accurately evaluate vibration levels and assess the benefits of future mitigation strategies in a controlled setting with a high level of repeatability.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing patient transport conditions during ambulance transit;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3