Capturing complexity in pulmonary system modelling

Author:

Clark Alys R1,Kumar Haribalan1,Burrowes Kelly2

Affiliation:

1. Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand

2. Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand

Abstract

Respiratory disease is a significant problem worldwide, and it is a problem with increasing prevalence. Pathology in the upper airways and lung is very difficult to diagnose and treat, as response to disease is often heterogeneous across patients. Computational models have long been used to help understand respiratory function, and these models have evolved alongside increases in the resolution of medical imaging and increased capability of functional imaging, advances in biological knowledge, mathematical techniques and computational power. The benefits of increasingly complex and realistic geometric and biophysical models of the respiratory system are that they are able to capture heterogeneity in patient response to disease and predict emergent function across spatial scales from the delicate alveolar structures to the whole organ level. However, with increasing complexity, models become harder to solve and in some cases harder to validate, which can reduce their impact clinically. Here, we review the evolution of complexity in computational models of the respiratory system, including successes in translation of models into the clinical arena. We also highlight major challenges in modelling the respiratory system, while making use of the evolving functional data that are available for model parameterisation and testing.

Funder

Royal Society of New Zealand

Aotearoa Foundation

National Institute of Biomedical Imaging and Bioengineering

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3