Engineering functional and anthropomorphic models for surgical training in interventional radiology: A state-of-the-art review

Author:

Zhao Zhuo1ORCID,Ma Yangmyung2ORCID,Mushtaq Adeel2,Radhakrishnan Vignesh3,Hu Yihua3,Ren Hongliang45,Song Wenzhan6,Tse Zion Tsz Ho3

Affiliation:

1. School of Electrical and Computer Engineering, University of Georgia, Athens, GA, USA

2. Hull York Medical School, University of York, Heslington, York, UK

3. School of Engineering and Materials Science, Queen Mary University of London, London

4. Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China

5. Department of Biomedical Engineering, National University of Singapore, Singapore

6. Department of Computer Science, University of Georgia, Athens, GA, USA

Abstract

Training medical students in surgical procedures and evaluating their performance are both necessary steps to ensure the safety and efficacy of surgeries. Traditionally, trainees practiced on live patients, cadavers or animals under the supervision of skilled physicians, but realistic anatomical phantom models have provided a low-cost alternative because of the advance of material technology that mimics multi-layer tissue structures. This setup provides safer and more efficient training. Many research prototypes of phantom models allow rapid in-house prototyping for specific geometries and tissue properties. The gel-based method and 3D printing-based method are two major methods for developing phantom prototypes. This study excluded virtual reality based technologies and focused on physical phantoms, total 189 works published between 2015 and 2020 on anatomical phantom prototypes made for interventional radiology were reviewed in terms of their functions and applications. The phantom prototypes were first categorized based on fabrication methods and then subcategorized based on the organ or body part they simulated; the paper is organized accordingly. Engineering specifications and applications were analyzed and summarized for each study. Finally, current challenges in the development of phantom models and directions for future work were discussed.

Funder

American Society for Quality

Royal Society for the Prevention of Cruelty to Animals

NIH Clinical Center

National Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3