Comparison of modelling and tracking methods for analysing elbow and forearm kinematics

Author:

Wang Wei12ORCID,Wang Dongmei1,Wesseling Mariska2,Xue Bin3,Li Feiyue3

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China

2. Department of Movement Sciences, KU Leuven, Leuven, Belgium

3. Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China

Abstract

This study aimed to find an optimal measurement protocol of elbow and forearm kinematics using different modelling and tracking methods. Kinematic data of elbow flexion/extension and forearm pronation/supination was acquired using optical motion capture from 12 healthy male volunteers. Segment coordinate systems for humerus, forearm, radius, ulna, and hand were defined. Different tracking methods, using anatomical markers or rigid or point maker clusters, were used to compute the three-dimensional rotations. Marker placement errors were assessed to evaluate the rigid body assumption. Multiple comparisons demonstrated statistical differences between tracking methods: compared to using only anatomical markers, tracking using clusters reduced the estimated range of pronation/supination by 14.9%–43.2%, while it estimated increased flexion/extension by 5.3%–9.1%. The study suggests using only anatomical markers exerts the optimal estimation of elbow and forearm kinematics. Modelling using the coordinate systems of the humerus and forearm and of the humerus and ulna, respectively, demonstrated good consistency with literature and are correspondingly regarded as the most appropriate approach for measuring pronation/supination and flexion/extension. The results are valuable in establishing a measurement protocol for analysing elbow and forearm kinematics, avoiding confusions and misinterpretations in communicating results from different methodologies.

Funder

Chinese medicine program of Shanghai

China Scholarship Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3