Evaluation of a convolutional neural network to identify scaphoid fractures on radiographs

Author:

Li Tao1,Yin Yaobin2,Yi Zhe2,Guo Zhe3,Guo Zhenlin4,Chen Shanlin2ORCID

Affiliation:

1. University of Science and Technology Beijing, Beijing, China

2. Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Beijing, China

3. Department of Radiology, Beijing Ji Shui Tan Hospital, Beijing, China

4. Beijing Computational Science Research Center, Beijing, China

Abstract

This study aimed to develop and evaluate a convolutional neural network for identifying scaphoid fractures on radiographs. A dataset of 1918 wrist radiographs (600 patients) was taken from an orthopaedic referral centre between 2010 to 2020. A YOLOv3 and a MobileNetV3 convolutional neural network were trained for scaphoid detection and fracture classification, respectively. The diagnostic performance of the convolutional neural network was compared with the majority decision of four hand surgeons. The convolutional neural network achieved a sensitivity of 82% and specificity of 94%, with an area under the receiver operating characteristic of 92%, whereas the surgeons achieved a sensitivity of 76% and specificity of 96%. The comparison indicated that the convolutional neural network’s performance was similar to the majority vote of surgeons. It further revealed that convolutional neural network could be used in identifying scaphoid fractures on radiographs reliably, and has potential to achieve the expert-level performance. Level of evidence: III

Publisher

SAGE Publications

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3