The influence of a nanoparticle gel loaded with siRNA-cyclooxygenase on flexor tendon healing: an in vivo animal study

Author:

Yang Qian Qian1ORCID,Chen Jing1,Zhou You Lang1,Tang Jin Bo1

Affiliation:

1. The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China

Abstract

We investigated the influence of cyclooxygenase (COX)-1 and COX-2 siRNAs delivered through a nanoparticle-gel system on the strength of flexor tendon repairs. Sixteen flexor digitorum profundus (FDP) tendons of chicken toes were transected, repaired and wrapped with gels to evaluate gel adherence. We found that the gel adhered to the tendon surface firmly. Next, 56 tendons were used in a first set of in vivo experiments to compare the therapeutic effects of different doses of COX siRNAs. Another 15 tendons were added in a second set to further assess the effects of a dosage of 12 μg. After 4 weeks, the mean strength of the repaired tendons increased most notably in the toes treated with 12 μg COX siRNAs, and the number of samples with low strength (<35 N) was significantly smaller than in the group without molecular treatment. We conclude that COX-1 and COX-2 siRNAs delivered through a nanoparticle-gel system increased the healing strength of the repaired tendons.

Publisher

SAGE Publications

Subject

Surgery

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3