Synthesis and characterization of NiFe2O4, CoFe2O4 and CuFe2O4 thin films for anode material in Li-ion batteries

Author:

Karthigayan N1,Manimuthu P2,Priya M3,Sagadevan Suresh4

Affiliation:

1. Department of Physics, Prathyusha Engineering College, Chennai, Tamil Nadu, India

2. Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India

3. Department of Physics, Saveetha Engineering College, Chennai, Tamil Nadu, India

4. Department of Physics, AMET University, Chennai, India

Abstract

The searches for advanced battery materials are endless. Ferrites have drawn much attention as a potential anode material in Li-ion battery. Nanocrystalline transition metal ferrite MFe2O4 (M = Ni, Co and Cu) thin films were deposited by spray pyrolysis technique over antimony doped tin oxide substrate. The phase and surface morphology were studied by X-ray diffraction and scanning electron microscope measurements, respectively. Magnetic property, film thickness and electrochemical performance of the materials are studied. The result shows that the films are of single phase, with cubic spinel structure for NiFe2O4 and CoFe2O4 and tetragonal structure for CuFe2O4. Magnetization studies reveal that the films are ferrimagnetic in nature. Electrochemical measurement reveals NiFe2O4 and CuFe2O4 are having good recyclable nature, which can be used as potential anode material for Li-ion batteries.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3