Affiliation:
1. ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Brindisi Research Centre, Brindisi, Italy
Abstract
Pd+ ions (90 keV) were implanted at normal incidence and at room temperature in different highly insulating (>200 GΩ) thermoplastic polymers (poly(methyl methacrylate), polypropylene, polyethylene terephthalate glycol-modified, and polycarbonate). At high fluence and optimized process parameters, the ion implantation gives rise to the formation of a nanocomposite thin surface layer constituted by Pd nanoclusters and carbonaceous material (nanographite/amorphous carbon). The morphological, microstructural, and microanalytical properties of the nanocomposite layers were investigated by He-ion microscopy, glancing incidence X-ray diffraction, and Raman scattering, respectively. The electrical properties were characterized by resistance, van der Pauw, and Hall measurements. We performed accurate simultaneous deformation/bending experiments and electrical resistance measurements. We show that the electrical resistance varies linearly with the mechanical deformation (beam deflection) applied. The experimental results are interpreted by “hopping conductivity” model considering the nanostructure configuration of the nanocomposite layers. A gauge factor in the range between 4 and 8, depending on the ion-implanted polymer, was obtained for prototype strain gauge devices.
Subject
Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modification of the polymer PETG by 16 MeV Au ions;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2024-07
2. Emerging polymer-based nanocomposites;Nanomaterials and Nanotechnology;2022-01