Zeeman gyrotropic scatterers

Author:

Valagiannopoulos Constantinos1,Gangaraj S Ali Hassani2,Monticone Francesco2ORCID

Affiliation:

1. Department of Physics, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan

2. School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA

Abstract

Anomalous scattering effects (invisibility, superscattering, Fano resonances, etc) enabled by complex media and metamaterials have been the subject of intense efforts in the past couple of decades. In this article, we present a full analysis of the unusual and extreme scattering properties of an important class of complex scatterers, namely, gyrotropic cylindrical bodies, including both homogeneous and core–shell configurations. Our study unveils a number of interesting effects, including Zeeman splitting of plasmonic scattering resonances, tunable gyrotropy-induced rotation of dipolar radiation patterns as well as extreme Fano resonances and non-radiating eigenmodes (embedded eigenstates) of the gyrotropic scatterer. We believe that these theoretical findings may enable new opportunities to control and tailor scattered fields beyond what is achievable with isotropic reciprocal objects, being of large significance for different applications, from tunable directive nano-antennas to selective chiral sensors and scattering switches, as well as in the context of nonreciprocal and topological metamaterials.

Funder

Division of Emerging Frontiers in Research and Innovation

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3