Tunable formation of copper metal, oxide, chloride and hydroxyl chloride nanoparticles from aqueous copper solutions using nanoscale zerovalent iron particles

Author:

Crane Richard1ORCID,Sapsford Devin2

Affiliation:

1. Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK

2. School of Engineering, Cardiff University, Queen’s Building, The Parade, Cardiff, UK

Abstract

The influence of different parameters (solid–liquid ratio, initial pH, initial Cu concentration and anion type) on the cementation of aqueous copper (Cu) with nanoscale zerovalent iron (nZVI) has been studied. The work has been established to study both the influence such parameters have on the kinetics and efficacy of the cementation process but also the physicochemical composition of resultant Cu-bearing products. The nZVI exhibited high Cu removal capacity (maximum removal 905.2 mg/g) due to its high surface area. X-ray diffraction determined the most common Cu-bearing precipitates were Cu2O, CuCl2 and Cu2(OH)3Cl for solutions containing Cl counterions (CuCl2 salt precursor), while Cu0 and Cu2O were the most common phases for those containing [Formula: see text] counterions (CuSO4 salt precursor). Transmission electron microscopy determined such precipitates were discrete nanoparticles of relatively high purity Cu (e.g. >80 wt% Cu or ≥99.9 wt% Cu and O). Overall the results demonstrate nZVI as effective for the one-pot transformation of aqueous Cu into a range of different high purity Cu-bearing nanoparticles. The methodology developed herein is therefore likely to have important application in the recovery of Cu from wastewater and process solutions where the direct upcycling to high-value Cu-bearing nanoparticles is an advantageous form in which to recover Cu.

Funder

Natural Environment Research Council

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3