Antimicrobial, antioxidant, and angiogenic bioactive silver nanoparticles produced using Murraya paniculata (L.) jack leaves

Author:

Rama Purushothaman1,Baldelli Alberto2ORCID,Vignesh Anandhan1,Altemimi Ammar B3ORCID,Lakshmanan Govindan14,Selvam Rajendran4,Arunagirinathan Narasingam5,Murugesan Kandasamy1,Pratap-Singh Anubhav2ORCID

Affiliation:

1. Centre for Advanced Studies in Botany, Guindy Campus, University of Madras, Chennai, India

2. Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada

3. Food Sciences Department, University of Basrah, Basrah, Iraq

4. Bharath Institute of Higher Education and Research, Chennai, India

5. Meenakshi Academy of Higher Education and Research, Chennai, India

Abstract

Murraya paniculata (MP) can be used as a reducing agent to produce silver nanoparticles (AgNPs) using a simple procedure. AgNPs are characterized in morphological and chemical properties, antioxidant activity, and cytotoxicity. The morphology of AgNPs derived from MP shows a face-centered cubic structure, spherical shape with an average particle size of 23 nm. The chemical structure shows characteristic peaks of AgNPs using UV-vis spectrometer at 438 nm. The formation of AgNPs is confirmed by analyzing their vibrational states under infrared radiation; typical peaks of AgNPs are recognized: at 3429 cm−1 (O-H stretch, H-bonded alcohols, phenols groups), 2923 cm−1 (C-H stretch alkanes), 1626 cm−1 (N-H bend 1° amines), 1583 cm−1 (C-C stretch in ring aromatic), 1039 cm−1 (C-N stretch aliphatic amines), 728 cm−1 (C-Cl stretch alkyl halides), and 589 cm−1 (C-Br stretch alkyl halides), respectively. AgNPs produced from MP show antioxidant activity and cytotoxicity. They show the highest sensitivity toward Bacillus cereus. Cytotoxicity of biosynthesized AgNPs, determined by scratch wound assay on in vitro human endothelial vein cell, created from MP showed dose-dependent activity. These AgNPs, at a concentration of 15.625 μg/mL, stimulate the proliferation and migration of endothelial cells (EC) showing an angiogenic activity.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3