Resistance-strain sensitive rubber composites filled by multiwalled carbon nanotubes for structuraldeformation monitoring

Author:

Liu Xingyao1,Guo Rongxin1,Lin Zhiwei1,Yang Yang1ORCID,Xia Haiting12,Yao Zheng1

Affiliation:

1. Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China

2. Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming, China

Abstract

In this article, multiwalled carbon nanotube/natural rubber composites with resistance-strain sensitivity were prepared by solution method, when the electrical percolation threshold of multiwalled carbon nanotube is only ∼3.5 wt%. The mechanical properties and resistance-strain response sensitivity were studied and analyzed systematically. The dispersion of multiwalled carbon nanotubes in the natural rubber matrix was characterized by field-emission scanning electron microscope and X-ray diffractometer. The composite exhibits good deformation sensitivity (gauge factor >27), large strain sensing range (>200%), and high signal stability when multiwalled carbon nanotube content was appropriate. The composite is suited to application in strain monitoring of large deformation structures since the resistance-strain response is more stable when strain exceeds 100%. To understand the mechanism of the resistance-strain response, the ‘shoulder peak’ of resistance-strain curve was researched and explained by the digital image correlation method, and an analytical model was developed when considering the effects of electronic tunneling and hopping in multiwalled carbon nanotube networks. Both experiment and analytical results confirm the break-restructure process of multiwalled carbon nanotube networks under applied strain cause the resistance-strain response. Finally, the practical application of the composite to monitoring strain load of rubber isolation bearing was realized.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3