Refractory Brewster metasurfaces control the frequency and angular spectrum of light absorption

Author:

Kwon Hoyeong1ORCID,Chalabi Hamidreza1,Alù Andrea1234ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas, USA

2. Photonics Initiative, Advanced Science Research Center, City University of New York, NY, USA

3. Physics Program, Graduate Center, City University of New York, NY, USA

4. Department of Electrical Engineering, City College of the City University of New York, NY, USA

Abstract

Ways to achieve highly efficient electromagnetic absorption over a broad bandwidth and broad angular spectrum have been discussed extensively in the past decades for various applications, such as low reflection devices and energy harvesting. To satisfy the efficiency requirements, metamaterial approaches have been explored in recent years. In this context, most studies have suggested the use of frequency selective surfaces or arrays of plasmonic resonators, which limit bandwidth and angular spectrum of performance. Here, we explore the application of refractory Brewster metasurfaces for photovoltaic applications. By matching the surface impedance of metasurfaces and free space at the Brewster angle, we show that metasurfaces can lead to efficient light absorption, and their response can be controlled accurately both in the angular and in the frequency spectrum to match the requirements of energy harvesting systems and facilitate large efficiency, high-temperature energy harvesting.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3