Affiliation:
1. Nanoscience and Technology Department, National Center for Physics, Islamabad, Pakistan
2. Department of Chemistry, Hazara University, Mansehra, Pakistan
Abstract
Novel organomodified nanoclay (bentonite) was reinforced in polystyrene, polyamide, and polystyrene/polyamide blend matrix to develop a series of nanocomposites using a solution processing technique. Modification of bentonite nanoclay was performed via an ion-exchange method with l-serine amino acid. Properties of polystyrene/modified bentonite, polyamide/modified bentonite, and polystyrene/polyamide/modified bentonite nanocomposites were studied using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, and cone calorimetry techniques. A unique honeycomb-like pattern was observed for polystyrene/polyamide blend with 0.5 g modified bentonite content. The morphology analysis revealed a co-continuous structure in which nanoclay particles were trapped. The polystyrene/polyamide/modified bentonite nanocomposite also showed fine improvement in thermal properties of the system, that is, initial decomposition temperature = 309–321°C and maximum weight loss temperature = 390–400°C. Glass transition temperature (351–385°C) of the series was also higher than the polystyrene/modified bentonite and polyamide/modified bentonite series. Increasing nanoclay content decreased the peak heat release rate of polystyrene/polyamide/modified bentonite 0.5 nanocomposite to 145 kW m−2, indicating improvement in nonflammability. Moreover, the blend and nanoclay series possess better flame retardancy than the blend and other nanocomposite series developed.
Subject
Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献