The Efficacy of Pretreatment 18F-FDG PET-CT-Based Deep Learning Network Structure to Predict Survival in Nasopharyngeal Carcinoma

Author:

Long Zi-chan12,Ding Xing-chen2,Zhang Xian-bin3ORCID,Shui-Yu 2,Zheng-Fu 2,sun Peng-peng2,Hao Fu-rong4,Li Zi-rong5,Hu Man2ORCID

Affiliation:

1. Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China

2. Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China

3. Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China

4. Department of Radiation Oncology, Weifang People’s Hospital, Weifang, China

5. Manteia Technologies, Xiamen, China

Abstract

Background: Previous studies have shown that the 5-year survival rates of patients with nasopharyngeal carcinoma (NPC) were still not ideal despite great improvement in NPC treatments. To achieve individualized treatment of NPC, we have been looking for novel models to predict the prognosis of patients with NPC. The objective of this study was to use a novel deep learning network structural model to predict the prognosis of patients with NPC and to compare it with the traditional PET-CT model combining metabolic parameters and clinical factors. Methods: A total of 173 patients were admitted to 2 institutions between July 2014 and April 2020 for the retrospective study; each received a PET-CT scan before treatment. The least absolute shrinkage and selection operator (LASSO) was employed to select some features, including SUVpeak-P, T3, age, stage II, MTV-P, N1, stage III and pathological type, which were associated with overall survival (OS) of patients. We constructed 2 survival prediction models: an improved optimized adaptive multimodal task (a 3D Coordinate Attention Convolutional Autoencoder and an uncertainty-based jointly Optimizing Cox Model, CACA-UOCM for short) and a clinical model. The predictive power of these models was assessed using the Harrell Consistency Index (C index). Overall survival of patients with NPC was compared by Kaplan–Meier and Log-rank tests. Results: The results showed that CACA-UOCM model could estimate OS (C index, 0.779 for training, 0.774 for validation, and 0.819 for testing) and divide patients into low and high mortality risk groups, which were significantly associated with OS ( P < .001). However, the C-index of the model based only on clinical variables was only 0.42. Conclusions: The deep learning network model based on 18F-FDG PET/CT can serve as a reliable and powerful predictive tool for NPC and provide therapeutic strategies for individual treatment.

Publisher

SAGE Publications

Subject

Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3