Risk Models for Predicting the Recurrence and Survival in Patients With Hepatocellular Carcinoma Undergoing Radio-Frequency Ablation

Author:

Yang Jilin1ORCID,Cui Lifeng2,Zhang Wenjian1,Yin Zexin1,Bao Shiyun13,Liu Liping13

Affiliation:

1. The Second Clinical Medical College, Jinan University, Shenzhen, China

2. Department of Thoracic Surgery, Maoming People’s Hospital, Maoming, China

3. Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China

Abstract

Background: Hepatocellular carcinoma (HCC) patients have a poor prognosis after radio-frequency ablation (RFA), and investigating the risk factors affecting RFA and establishing predictive models are important for improving the prognosis of HCC patients. Methods: Patients with HCC undergoing RFA in Shenzhen People’s Hospital between January 2011 and December 2021 were included in this study. Using the screened independent influences on recurrence and survival, predictive models were constructed and validated, and the predictive models were then used to classify patients into different risk categories and assess the prognosis of different categories. Results: Cox regression model indicated that cirrhosis (hazard ratio [HR] = 1.65), alpha-fetoprotein (AFP) ⩾400 ng/mL (HR = 2.03), tumor number (multiple) (HR = 2.11), tumor diameter ⩾20 mm (HR = 2.30), and platelets (PLT) ⩾ 244 (109/L) (HR = 2.37) were independent influences for recurrence of patients after RFA. On the contrary, AFP ⩾400 ng/mL (HR = 2.48), tumor number (multiple) (HR = 2.52), tumor diameter ⩾20 mm (HR = 2.25), PLT ⩾244 (109/L) (HR = 2.36), and hemoglobin (HGB) ⩾120 (g/L) (HR = 0.34) were regarded as independent influences for survival. The concordance index (C-index) of the nomograms for predicting disease-free survival (DFS) and overall survival (OS) was 0.727 (95% confidence interval [CI] = 0.770-0.684) and 0.770 (95% CI = 0.821-7.190), respectively. The prognostic performance of the nomograms was significantly better than other staging systems by analysis of the time-dependent C-index and decision curves. Each patient was scored using nomograms and influencing factors, and patients were categorized into low-, intermediate-, and high-risk groups based on their scores. In the Kaplan-Meier survival curve, DFS and OS were significantly better in the low-risk group than in the intermediate- and high-risk groups. Conclusions: The 2 prediction models created in this work can effectively predict the recurrence and survival rates of HCC patients following RFA.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3