Affiliation:
1. The Second Clinical Medical College, Jinan University, Shenzhen, China
2. Department of Thoracic Surgery, Maoming People’s Hospital, Maoming, China
3. Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
Abstract
Background: Hepatocellular carcinoma (HCC) patients have a poor prognosis after radio-frequency ablation (RFA), and investigating the risk factors affecting RFA and establishing predictive models are important for improving the prognosis of HCC patients. Methods: Patients with HCC undergoing RFA in Shenzhen People’s Hospital between January 2011 and December 2021 were included in this study. Using the screened independent influences on recurrence and survival, predictive models were constructed and validated, and the predictive models were then used to classify patients into different risk categories and assess the prognosis of different categories. Results: Cox regression model indicated that cirrhosis (hazard ratio [HR] = 1.65), alpha-fetoprotein (AFP) ⩾400 ng/mL (HR = 2.03), tumor number (multiple) (HR = 2.11), tumor diameter ⩾20 mm (HR = 2.30), and platelets (PLT) ⩾ 244 (109/L) (HR = 2.37) were independent influences for recurrence of patients after RFA. On the contrary, AFP ⩾400 ng/mL (HR = 2.48), tumor number (multiple) (HR = 2.52), tumor diameter ⩾20 mm (HR = 2.25), PLT ⩾244 (109/L) (HR = 2.36), and hemoglobin (HGB) ⩾120 (g/L) (HR = 0.34) were regarded as independent influences for survival. The concordance index (C-index) of the nomograms for predicting disease-free survival (DFS) and overall survival (OS) was 0.727 (95% confidence interval [CI] = 0.770-0.684) and 0.770 (95% CI = 0.821-7.190), respectively. The prognostic performance of the nomograms was significantly better than other staging systems by analysis of the time-dependent C-index and decision curves. Each patient was scored using nomograms and influencing factors, and patients were categorized into low-, intermediate-, and high-risk groups based on their scores. In the Kaplan-Meier survival curve, DFS and OS were significantly better in the low-risk group than in the intermediate- and high-risk groups. Conclusions: The 2 prediction models created in this work can effectively predict the recurrence and survival rates of HCC patients following RFA.
Funder
Science, Technology and Innovation Commission of Shenzhen Municipality
Basic and Applied Basic Research Foundation of Guangdong Province