Affiliation:
1. College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
2. Department of Clinical Medicine, Chengdu Medical College, Chengdu, People’s Republic of China
3. Department of Oncology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies, and the primary treatment methods are radiotherapy and chemotherapy. Radiotherapy alone, concurrent chemoradiotherapy, and induction chemotherapy combined with concurrent chemoradiotherapy can be used according to different grades. Treatment options and prognoses vary greatly depending on the grade of disease in the patients. Accurate grading and risk assessment are required. Recently, radiomics has combined a large amount of invisible high-dimensional information extracted from computed tomography, magnetic resonance imaging, or positron emission tomography with powerful computing capabilities of machine-learning algorithms, providing the possibility to achieve an accurate diagnosis and individualized treatment for cancer patients. As an effective tumor biomarker of NPC, the radiomic signature has been widely used in grading, differential diagnosis, prediction of prognosis, evaluation of treatment response, and early identification of therapeutic complications. The process of radiomic research includes image segmentation, feature extraction, feature selection, model establishment, and evaluation. Many open-source or commercial tools can be used to achieve these procedures. The development of machine-learning algorithms provides more possibilities for radiomics research. This review aimed to summarize the application of radiomics in NPC and introduce the basic process of radiomics research.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献