Towards Safe Nanoparticle Technologies for Nucleic Acid Therapeutics

Author:

Miller Andrew D1

Affiliation:

1. Imperial College Genetic Therapies Centre, Department of Chemistry, London, United Kingdom

Abstract

Nucleic acid therapeutics (or gene therapy) has to date failed to deliver on promise but rapid improvements in the understanding and use of delivery technologies should reverse this situation. In this review of work performed in and in collaboration with the Imperial College Genetic Therapies Centre, progress towards safe nanoparticles for efficient delivery of functional nucleic acids in vivo is described. The intention is to demonstrate the fruits of a journey from the results of initial studies in animal models of disease that suggested that so much should be possible so quickly, to the realization that new technologies are rarely successful so quickly, through to developments in the present day that appear to be approaching the preclinical/clinical threshold with realism but measured confidence. New chemistry is central to the design and formulation of safe nanotechnologies. Chemistry should have a central role to play in ensuring that nucleic acid therapeutics truly live up to their potential for therapy and cure, none more so than in the derivation of newer and better therapies for cancers.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3