Medications for Extensively Drug-Resistant Tuberculosis: Back to the Future?

Author:

Ashby Charles R1,Jodlowski Tomasz Z2,Sym Donna3

Affiliation:

1. CHARLES R ASHBY JR PhD, Professor, St. John's University College of Pharmacy and Allied Health Professions, Queens, NY

2. TOMASZ Z JODLOWSKI PharmD BCPS, Assistant Clinical Professor, St. John's University College of Pharmacy and Allied Health Professions, Queens, NY; Infectious Diseases Clinical Pharmacist, Beth Israel Medical Center, New York, NY

3. DONNA SYM BS PharmD, Assistant Clinical Professor, St. John's University College of Pharmacy and Allied Health Professions; Clinical Preceptor, North Shore University Hospital, Manhasset, NY

Abstract

Objective: To reexamine the existing medications for the potential treatment of extensively drug-resistant tuberculosis (XDR-TB), based on susceptibility data, and to identify potential future medications from the literature. Data Sources: Relevant information was identified through a search of MEDLINE (1966–November 2007), PubMed (1955–November 2007), American Search Premier (1975–November 2007), International Pharmaceutical Abstracts (1960–November 2007), Science Citation Index Expanded (1996–November 2007), Cochrane Databases (publications archived until November 2007), and various tertiary sources as listed in the references, using the terms extensively drug-resistant tuberculosis (XDR-TB), ethambutol, pyrazinamide, para-aminosalicylic acid, cycloserine, linezolid, diarylquinoline, nitroimidazopyran, fluoroquinolones, β-lactams, new treatments, and ethionamide alone or in combination regimens. Study Selection and Data Extraction: After identification of the relevant information, the data presented in this article were selected based on clinical relevance and value of information. Data Synthesis: Based on susceptibility data, pyrazinamide, ethambutol, para-aminosalicylic acid, cycloserine, and ethionamide may be used for the treatment of tuberculosis. However, due to the emergence of XDR-TB, many of these agents are no longer successful treatment regimens. We have found limited data supporting potential future use of β-lactams, clarithromycin, and linezolid in resistant TB infections. TMC207, nitroimidazopyran, and SQ109 compounds may also prove to be viable options in the near future for treatment of tuberculosis, especially in cases with resistance to mainstay medications. Conclusions: Extensively resistant tuberculosis appears to be a potentially catastrophic disease if allowed to spread. Due to its resistance profile, very few potentially effective agents are available, calling attention to this growing problem.

Publisher

SAGE Publications

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3