Updated Review Article: Cyclin-Dependent Kinase 4/6 Inhibitor Impact, FDA Approval, and Resistance Pathways

Author:

Hunter Rodney J.12,Park Jooyoung1,Asprer Kristen J.2ORCID,Doan Andrew H.2

Affiliation:

1. Memorial Hermann Texas Medical Center, Houston, TX, USA

2. Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, USA

Abstract

Objective: To describe the mechanism of cyclin-dependent kinase (CDK) 4/6 inhibitors, mechanisms of resistance, and summarize various clinical trials used to determine the efficacy and safety of CDK4/6 inhibitor used for the treatment of hormone receptor-positive (HR+), human epidermal growth factor receptor 2 negative (HER2−), advanced or metastatic breast cancer. Data Sources: An extensive literature search using PubMed and notable sources was performed (2016 to February 2022) using the following search terms: CDK4/6 inhibitors, palbociclib, abemaciclib, ribociclib, CDK4/6 inhibitor resistance, FAT1 gene, luminal A breast cancer, luminal B breast cancer, HR+/HER2− breast cancer. Abstracts from conferences, national clinical trials, and drug monographs were reviewed. Study Selection and Data Extraction: Relevant clinical studies or those conducted in humans and updated clinical trials were considered. Data synthesis: The various clinical trials reviewed and results have led to numerous studies and expansions of U.S. Food and Drug Administration (FDA) approval. Although the use of CDK4/6 inhibitors has improved progression-free survival in patients with HR+, HER2− breast cancer, studies have shown that resistance pathways can cause cells to be insensitive to CDK4/6 inhibitors, leading to continued cell proliferation. Conclusions: CDK4/6 inhibitors are recommended as first-line therapy in combination with endocrine therapy for patients with HR+/HER2− advanced breast cancer. However, mutations and acquired resistance can occur that affect a patient’s response to treatment. Additional research needs to be conducted on strategies to overcome resistance and determine how ethnicity plays a role in resistance pathways.

Publisher

SAGE Publications

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3