A Note on Conditional Heteroskedasticity in the Market Model

Author:

Diebold Francis X.1,Lim Steve C.2,Lee C. Jevons3

Affiliation:

1. Department of Economics, University of Pennsylvania

2. Baruch College, City University of New York

3. Freeman School, Tulane University

Abstract

We examine the usefulness and implications of modeling conditional heteroskedasticity in market model residual returns. Autoregressive conditional heteroskedasticity (ARCH) plays a key role in our approach. To highlight the salient issues, we first provide a case study of one firm, Winn-Dixie Stores. Formal testing procedures reveal strong ARCH effects. ARCH models are then estimated and used to infer the pattern of time-varying volatility; differences in parameter estimates caused by use of the fully efficient estimator are also noted. Next, we provide a systematic examination of the entire New York Stock Exchange (NYSE) market. We find ARCH in roughly 25 percent of NYSE firms; moreover, we cannot reject the null hypothesis that the firms that display ARCH are unrelated to those with unconditional heteroskedasticity. The percentage of firms displaying some form of heteroskedasticity therefore appears quite large.

Publisher

SAGE Publications

Subject

Economics, Econometrics and Finance (miscellaneous),Finance,Accounting

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3