A new cytochemical method for ultrastructural detection of liposomes in tissues in vivo.

Author:

Bugelski P J,Gennaro D E,Poste G,Hoffstein S T

Abstract

Multilamellar vesicles (MLVs) have been used as drug carriers to increase efficacy or decrease toxicity of a variety of therapeutic agents, including antineoplastics, antibiotics, and immunomodulators. Although analysis of the disposition of encapsulated materials is relatively simple using radiolabels or single enzymes, determining the cellular and subcellular disposition of intact MLVs, i.e., those that still retain their encapsulated materials, is much less straightforward. We have developed a technique that allows demonstration of the uptake of intact MLVs by Kupffer cells. The method is based on co-localization of paired enzymes, glucose oxidase (GO), and horseradish peroxidase (HRP). The rationale for the localization is that H2O2 generated from glucose and oxygen by GO acts as the substrate for the HRP-mediated oxidative polymerization of diaminobenzidine. Therefore, only sites of co-localization of GO and HRP should stain. Mice were injected IV with phosphatidyl choline MLVs encapsulating HRP and GO. Encapsulated enzymes were separated from non-encapsulated by passing the MLVs over a Sepharose 2B column. Control mice were injected with equivalent amounts of free GO. Mice were sacrificed 30 min after injection and liver tissue was fixed in 3% cacodylate-buffered glutaraldehyde for at least 18 hr. Tissues were washed in buffer, then stained in medium containing glucose, diaminobenzidine HCl, and dimethylsulfoxide in 0.1 M cacodylate buffer. In animals injected with MLV-encapsulated GO and HRP, vacuoles in Kupffer cells and some endothelial cells contained electron-dense reaction product. No other cell type, including polymorphonuclear leukocytes, was stained. In control animals no staining was seen. Our results indicate that encapsulation of paired enzymes may be a feasible method to demonstrate the cellular and subcellular disposition of intact liposomes.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3