Control of Protein Degradation and Growth Phase in Normal and Neoplastic Cells

Author:

Baccino Francesco M.1,Tessitore Luciana1,Bonelli Gabriello1

Affiliation:

1. Istituto di Patologia Generale dell'Università, Corso Raffaello 30, 10125 Torino, Italy

Abstract

Cells have to double their protein mass in order to divide. Whether this is achieved through increased synthesis (PS), decreased degradation (PD), or a combination of both is still debated. Likewise open are other basic questions: whether, beyond differences relating to growth phase (GP) or rate, reduced PD rates are a general characteristic of neoplastic versus normal cells, conferring to them a definite growth advantage; which mechanisms are operating the PD regulation, if any, during GP transitions, and which ones may be defective in neoplastic cells. Growing liver under conditions of regeneration or development is known to achieve a net protein accumulation thanks to increased PS, and particularly, to decreased PD rates, as compared with the adult, steady-state tissue; the level of lysosomal proteinase (LP) activities is reduced; in the regenerating liver this reduction has been located in cycling hepatocytes. AH-130 Yoshida ascites hepatoma cells effect the transition from log to stationary GP by concurrently reducing PS and accelerating PD (slow turnover protein pool); while PD is virtually not affected by lysosomal inhibitors (LI) in growing cells, the extra PD in resting cells is all inhibitable; there is no regulation of LP levels over this GP transition, which is due to depletion of oxygen and nutrients. GP transitions in normal 3T3 cells are also coupled with regulations of both PS and PD, the extra PD in quiescent cells being all suppressible by LI. Quiescence of 3T3 cells, due to depletion of growth factors, is associated with a marked elevation of some LP activities. Transformed 3T3 cells neither cease growth nor elevate PD even at very crowded densities, when PS rates decline; they also fail to regulate LP activities. These findings are discussed in relation to the general problems outlined above.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3