Temporal Profile of Clinical Signs and Histopathologic Changes in an F-344 Rat Model of Kainic Acid–induced Mesial Temporal Lobe Epilepsy

Author:

Sharma Alok K.12,Jordan William H.3,Reams Rachel Y.2,Hall D. Greg3,Snyder Paul W.1

Affiliation:

1. Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA

2. Covance Laboratories Inc., Greenfield, Indiana, USA

3. Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA

Abstract

Since there is limited information in the literature, the purpose of this study was to investigate clinical signs, morphology, and temporal progression of lesions from Days 3 to 168 in a kainic acid (KA)-induced Fischer-344 (F-344) rat model of mesial temporal lobe epilepsy (MTLE). Following a single KA subcutaneous dose of 9 mg/kg to young adult male rats, 95% survived, 93% exhibited status epilepticus, and 80% eventually developed spontaneous motor seizures. Histopathology included hematoxylin and eosin (H&E), autofluorescence, Fluoro-Jade B, Timm’s, ED-1/CD68, GFAP, doublecortin, and Ki-67. Neuronal degeneration occurred on Day 3 in the hippocampal CA1, CA3, and dentate hilar regions; amyg-daloid and thalamic nuclei; and frontoparietotemporal, entorhinal and piriform cortices. Degeneration severity peaked on Day 6 and decreased progressively until Day 168. Aberrant mossy fiber (MF) sprouting was present in the inner molecular layer of dentate gyrus on Days 6–168. Microliosis and astrogliosis peaked on Day 28 and generally colocalized with the distribution of neuronal degeneration. Important correlates to human MTLE included induction of spontaneous seizures, more severe neuronal damage of CA1 than CA3 (in contrast to other animal models but similar to humans), hilar neuronal loss, activated microgliosis and astrogliosis, aberrant MF sprouting, and dentate granule cell neurogenesis. Aberrant MF sprouting prior to spontaneous motor seizures and reduced seizure frequency with a decrease in aberrant MF sprouting support the hypothesis that MF sprouts are necessary for spontaneous seizure generation and maintenance.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Reference83 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3