Time Course Gene Expression Using Laser Capture Microscopy-Extracted Bile Ducts, but Not Hepatic Parenchyma, Reveals Acute Alpha-Naphthylisothiocyanate Toxicity

Author:

Cullen John Michael12,Falls James Greg32,Brown Harlan Roger3,Yoon Lawrence Wonsik3,Cariello Neal Foster3,Faiola Brenda34,Kimbrough Carie Lynette5,Jordan Holly Lynn3,Miller Richard Thomas3

Affiliation:

1. North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA

2. These authors contributed equally to this article

3. GlaxoSmithKline, Safety Assessment, Research Triangle Park, North Carolina, USA

4. Currently: RTI International, Center for Pharmacology and Toxicology, Research Triangle Park, North Carolina, USA

5. GlaxoSmithKline, Statistical Sciences, Research Triangle Park, North Carolina, USA

Abstract

Acute toxic responses to a 50-mg/kg oral dose of 1-naphthylisothiocyanate (ANIT) were evaluated by microarray analysis of laser capture–microdissected rat biliary epithelium or hepatic parenchyma obtained 2 and 6 hours postdose. Distinct differences in gene expression patterns between biliary epithelium and hepatic parenchyma were noted at the 2-hour postdose time point, where 375 genes were altered in biliary epithelium but only 38 genes were altered in hepatic parenchyma. Endoplasmic reticulum stress genes were uniquely expressed in biliary epithelial cells at 2 hours postdose. By 6 hours postdose, 620 genes were altered in biliary epithelium, but only 32 genes were altered in hepatic parenchyma. In biliary epithelium, expression of genes involved in the unfolded protein response had decreased compared with the 2-hour time point, while expression of genes involved in protein degradation such as proteasome-ubquination pathways and cell death pathways had increased. At this same time, hepatic parenchymal gene expression changed little. Within 6 hours following oral exposure to ANIT, prior to morphologic changes, specific biliary epithelial gene expression changes, indicative of a vigorous unfolded protein response with protein destruction and cell death pathway activation were noted, in contrast to minor changes in the hepatic parenchyma.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3