Effects of Environmentally Relevant Mixtures of Persistent Organic Pollutants on the Developmental Neurobiology in Rats

Author:

Gill Santokh1,Bowers Wayne J.2,Nakai Jamie S.2,Yagminas Al2,Mueller Rudi1,Pulido Olga1

Affiliation:

1. Toxicology Research Division, Health Products and Foods Branch, Health Canada, Ottawa, Ontario, Canada

2. Environmental Health Sciences, Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada

Abstract

We report the developmental neuropathology for rat pups at postnatal day (PND) 37 and PND 77 and the molecular biomarkers for PND 35, 75, and 350 after perinatal exposure to a reconstituted mixture of persistent organochlorine pollutants (POPs) based on the blood profiles of people living in the Great Lake Basin. The developmental neuropathology included routine histopathology evaluation, quantification of cell proliferation and death in the subventricular zone, linear morphometric measurements, and transcriptional analysis. No histopathological, structural, or stereological changes were observed in animals treated with the POPs or Aroclor 1254, on PND 37 or PND 77. While no transcriptional changes were found in Arcolor-treated animals, significant transcriptional changes were observed on PND 350 in female offspring perinatally exposed to 0.13 mg/kg of the POP mixture. Markers of the cholinergic system including acetylcholinesterase and the muscarinic receptors (subtypes M1–M5) were downregulated 2- to 6-fold. In addition, structural genes including neurofilaments (NFLs) and microtubule-associated protein (MAP-2) were downregulated at least 2-fold or greater. Our results support that in utero and lactational exposure to the chemical mixture of POPs lead to developmental changes in adult rat brains.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3