The Effects of Xenobiotics on the Structure and Function of Thyroid Follicular and C-Cells

Author:

Capen Charles C.1,Martin Sharron L.1

Affiliation:

1. The Ohio State University, Departments of Veterinary Pathobiology and Veterinary Clinical Sciences, Columbus, Ohio 43210

Abstract

The mammalian thyroid gland is composed of 2 distinct endocrine cell populations concerned with the synthesis of 2 different classes of hormones. Follicular cells secrete the metabolically active iodothyronines whereas the C- (parafollicular) cells are concerned with the production of calcitonin, a hormone that influences blood levels of calcium and phosphorus, and bone cell metabolism. The synthesis of metabolic thyroid hormones is different than in other endocrine glands because the final assembly of hormone occurs within the follicular lumen. This extracellular synthesis of thyroid hormones is made possible by thyroglobulin, a glycoprotein synthesized by follicular cells. The secretion of thyroid hormones under the influence of pituitary thyrotrophin (TSH) from stores in the luminal colloid is initiated by elongation of microvilli and formation of pseudopods. FD&C Red No. 3 is a tetraiodinated derivative of fluorescein which in lifetime studies increases the incidence of thyroid follicular cell adenomas in male Sprague-Dawley rats. The striking changes in circulating levels of thyroid hormones and morphologic evidence of follicular cell stimulation are the result of alterations in the peripheral metabolism of thyroxine. An inhibition by FD&C Red No. 3 of 5′-deiodinase in the liver and kidney would explain the lower serum triiodothyronine (T3) levels. The pituitary, sensing the lowered circulating levels of T3, increased the secretion of thyroid stimulating hormone which resulted in the morphologic evidence of follicular cell stimulation in the long-term studies. Other xenobiotics increase the incidence of thyroid tumors in rodents by a direct effect on the thyroid gland to disrupt 1 of 3 or more possible steps in the biosynthesis of thyroid hormones. Physiologic perturbations alone, such as iodine deficiency or partial thyroidectomy, can disrupt thyroid hormone economy in rodents and, if sustained, increase the development of thyroid tumors. The wide variety of drugs, chemicals, and physiologic perturbations which increase thyroid tumor development appear to act through a secondary (indirect) mechanism to promote tumor development by causing a long-standing hypersecretion of thyroid stimulating hormone. Nodular and/or diffuse hyperplasia of C-cells occurs with advancing age in many strains of laboratory rats and in response to long-term hypercalcemia in certain animal species and human beings. Focal or diffuse hyperplasia of ten precedes the development of C-cell neoplasms. Radiation and the feeding of diets high in vitamin D resulting in hypercalcemia have been reported to increase the incidence of C-cell tumors in rats.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3