Pituitary Gland: Neuropeptides, Neurotransmitters and Growth Factors

Author:

Koenig James I.1

Affiliation:

1. Neurology Service, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

Abstract

The hypothalamus receives neuronal afferents from numerous sources including inputs from limbic structures, such as the amygdala and hippocampus, and from brainstem regions involved in the regulation of the cardiovascular system and other autonomic functions. These afferents using a vast array of neurotransmitters and neuropeptides influence the activity of the hypothalamic neurons which synthesize and secrete the hypothalamic releasing and release-inhibiting factors into the hypophyseal portal circulatory system. The afferents can modulate the activity of the hypothalamic neurons by forming synapses on the neuronal cell body, on the nerve terminals in the median eminence or both. The chemicals most frequently used as neurotransmitters are the biogenic amines, including the catecholamines (norepinephrine, dopamine and epinephrine), serotonin, acetylcholine and gamma-aminobutyric acid (GABA). The stimulatory influence of norepinephrine, serotonin, and acetylcholine on the secretion of corticotropin (ACTH) in rodents and man will be discussed, whereas GABA exerts an inhibitory effect on the secretion of ACTH in both man and rodents. These effects appear to be mediated by changes in the secretion of the corticotropin-releasing hormone (CRH) and vasopressin into the hypophyseal portal circulation. Numerous neuropeptides appear to alter the secretion of ACTH in the rat. We will discuss the stimulatory actions of neuropeptide Y (NPY), angiotensin II, and peptides of immune cell origin on the secretion of ACTH and CRH. The opioid peptides inhibit the secretion of CRH into the portal blood, however, they exert a potent stimulatory effect on prolactin secretion in the rat and man. We will discuss the receptor subtypes involved in mediating these effects and the interactions of the opioid peptides with the neurotransmitter-containing neurons which project to the hypothalamus. This discussion will focus on the factors which impinge on the releasing factor-containing neurons in the hypothalamus and how they can be studied under in vivo and in vitro conditions.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3