Utilization of Genetically Altered Animals in the Pharmaceutical Industry

Author:

Rudmann Daniel G.1,Durham Stephen K.2

Affiliation:

1. Department of Pathology, DuPont Pharmaceuticals Company, Newark, Delaware 19714, daniel.g.rudmann.2 @ dupontpharma.com.

2. Department of Experimental Pathology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543

Abstract

The study of transgenic and gene-deleted (knockout) mice provides important insights into the in vivo function and interaction of specific gene products. Within the pharmaceutical industry, genetically altered mice are used predominantly in discovery research to characterize the diverse functions of one or multiple gene products or to establish animal models of human disease for proof-of-concept studies. We recently used genetically altered animals in drug discovery to examine the NF-KB family of transcriptional regulatory genes and to elucidate their essential role in the early onset of immune and inflammatory responses. Transgenic and knockout mice are also useful in drug development, because questions regarding risk assessment and carcinogenesis, xenobiotic metabolism, receptor- and ligand-mediated toxicity, and immunotoxicity can be evaluated using these genetically altered mice. For example, the p53 knockout mouse is one of several genetically altered mice whose use may increase the sensitivity and decrease the time and cost of rodent carcinogenicity bioassays. As with any experimental model system, data obtained from genetically altered mice must be interpreted carefully. The complete inactivation of a gene may result in altered expression of related genes or physiologic compensation for the loss of the gene product. Consideration must also be given to the genetic background of the mouse strain and the impact of strain variability on disease or toxicity models. Despite these potential limitations, knockout mice provide a powerful tool for the advancement of drugs in the pharmaceutical industry.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3