Developing Stage-dependent Retinal Toxicity Induced by l-glutamate in Neonatal Rats

Author:

Mitori Hikaru12,Izawa Takeshi2,Kuwamura Mitsuru2,Matsumoto Masahiro1,Yamate Jyoji2

Affiliation:

1. Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba, Japan

2. Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan

Abstract

The neurotransmitter glutamate causes excitotoxicity in the human retina. In neonatal rats, the degree of glutamate-induced retinal damage depends on age at administration. To elucidate the sensitivity to glutamate on various developing stage of retina, we investigated glutamate-induced retinal damage and glutamate target cells on each postnatal day (PND). Newborn rats received a single subcutaneous administration of l-glutamate on PNDs 1 to 14. Retinal cell apoptosis characterized as pyknotic and terminal deoxynucleotidyl transferase–mediated dUTP digoxigenin nick end labeling–positive nuclei was analyzed at 6 hr after treatment, and sequential morphological features of retina were evaluated on PND 21. The inner retina on PND 21 exhibited thinning in rats treated after PND 2. The thinning was most severe in rats treated on PND 8 and the number of apoptotic cells also peaked. No thinning was observed in rats treated on PND 14. In the inner nuclear layer, glutamate target cells were mainly amacrine cells; additionally, bipolar cells and horizontal cells were damaged on PND 8. These retinal changes were more severe in central retina than those in peripheral retina on PND 8. Our findings indicate the morphological consequences of glutamate-induced retinal excitotoxicity and glutamate target cells on each PND and reveal that glutamate-induced retinal damage depends on developing stage.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3