Immunohistochemical Characterization of Macrophages and Myofibroblasts in α-Naphthylisothiocyanate (ANIT)–Induced Bile Duct Injury and Subsequent Fibrogenesis in Rats

Author:

Golbar Hossain M.1,Izawa Takeshi1,Yano Ryo1,Ichikawa Chisa1,Sawamoto Osamu2,Kuwamura Mitsuru1,LaMarre Jonathan3,Yamate Jyoji1

Affiliation:

1. Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan

2. Safety Evaluation, Preclinical Assessment, Otsuka Pharmaceutical Factory, Tokushima, Japan

3. Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada

Abstract

To investigate pathogenesis of post–bile duct (BD) injury fibrosis, interlobular BD epithelial injury was induced in male F344 rats by a single IP injection of α-naphthylisothiocyanate (75 mg/kg body weight) and rats were observed for 12 days. On days 1 to 2, cholangiocytes were injured and desquamated. On days 3 to 5, the affected BD began to regenerate, showing positive staining for CK19 and vimentin. On days 5 to 9, fibrotic areas gradually developed around regenerating BD in Glisson’s sheath. These consisted of cells positive for vimentin, desmin, and α-SMA; vimentin- and desmin-positive cells were increased in early stage (days 1–3), whereas α-SMA-positive cells appeared in mid (days 4–7) and late stages (days 8–12), although there were cells coexpressing these cytoskeletons. On day 12, BD regeneration almost completed, with reduced fibrosis. Macrophages positive for ED2 (CD163) increased transiently in early stage, whereas those reacting to ED1 (CD68), OX6 (MHC II), and SRA-E5 (CD204) showed a consistent increase throughout the experiment. Interestingly, OX6-positive cells were limited to Glisson’s sheath, whereas SRA-E5-positive cells were seen exclusively along sinusoids of hepatic lobules. MCP-1 mRNA increased significantly in early stage. This study shows that macrophages exhibiting different immunophenotypes and distributions participate in post-BD injury fibrosis associated with myofibroblasts expressing various mesenchymal cytoskeletons.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3