Mechanistic Basis for Nonlinearities and Thresholds in Rat Liver Carcinogenesis by the DNA-Reactive Carcinogens 2-Acetylaminofluorene and Diethylnitrosamine

Author:

Williams Gary M.1,Iatropoulos Michael J.2,Jeffrey Alan M.2

Affiliation:

1. Department of Pathology, New York Medical College, Valhalla, New York 10595,

2. 1Department of Pathology, New York Medical College, Valhalla, New York 10595

Abstract

To explore differences in mechanisms of carcinogenicity at low and high exposures, we have conducted a series of exposure-response studies of hepatocarcinogenesis in rats using 2 well-studied DNA-reactive carcinogens, 2-acetylaminofluorene and diethylnitrosamine. In these studies, we have used intraperitoneal injection or intragastric instillation to deliver exact doses during an initiation segment followed by phenobarbital as a liver tumor promoter to enhance manifestation of initiation. This protocol results in carcinogenicity comparable to that produced by lifetime exposure to the carcinogens. Our findings in these experiments provide evidence for the following: (a) formation of DNA adducts can be nonlinear, with a plateau at higher exposures; (b) cytotoxicity shows no-effect levels and is related to exposure; (c) compensatory hepatocyte proliferation shows no-effect levels and can be supralinear at high exposures; (d) formation of preneoplastic hepatocellular altered foci can show no-effect levels and appears supralinear at high exposures; (e) no-effect levels can exist for tumor development, and the exposure response can be supralinear. We interpret these findings to reflect thresholds for hepatocellular initiating effects of these carcinogens and exaggerated responses at high exposures attributable to cytotoxicity and compensatory hepatocyte proliferation. Such enhanced proliferation of hepatocytes harboring DNA damage likely results in an exaggerated yield of mutations in critical genes, leading to supralinear initiation of carcinogenesis. Thus, mechanisms differ between low and high exposures. Based on these observations, we suggest that linear extrapolation from high toxic exposures to postulated low-exposure effects of DNA-reactive carcinogens can yield overestimates. Such extrapolation must be supported by mechanistic information. The finding of no-effect levels provides a basis for understanding why low-level environmental exposures of humans to even DNA-reactive carcinogens may convey no cancer risk.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3