Deep Learning in Toxicologic Pathology: A New Approach to Evaluate Rodent Retinal Atrophy

Author:

De Vera Mudry Maria Cristina1ORCID,Martin Jim2,Schumacher Vanessa1ORCID,Venugopal Raghavan2

Affiliation:

1. Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland

2. Roche Tissue Diagnostics, Santa Clara, CA, USA

Abstract

Quantification of retinal atrophy, caused by therapeutics and/or light, by manual measurement of retinal layers is labor intensive and time-consuming. In this study, we explored the role of deep learning (DL) in automating the assessment of retinal atrophy, particularly of the outer and inner nuclear layers, in rats. Herein, we report our experience creating and employing a hybrid approach, which combines conventional image processing and DL to quantify rodent retinal atrophy. Utilizing a DL approach based upon the VGG16 model architecture, models were trained, tested, and validated using 10,746 image patches scanned from whole slide images (WSIs) of hematoxylin-eosin stained rodent retina. The accuracy of this computational method was validated using pathologist annotated WSIs throughout and used to separately quantify the thickness of the outer and inner nuclear layers of the retina. Our results show that DL can facilitate the evaluation of therapeutic and/or light-induced atrophy, particularly of the outer retina, efficiently in rodents. In addition, this study provides a template which can be used to train, validate, and analyze the results of toxicologic pathology DL models across different animal species used in preclinical efficacy and safety studies.

Funder

F. Hoffmann-La Roche

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3