Metal Storage and Transport Proteins Increase After Exposure of the Rat Lung to an Air Pollution Particle

Author:

Ghio Andrew J.1,Richards Judy H.1,Dittrich Kathleen L.2,Samet James M.3

Affiliation:

1. National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Research Triangle Park, North Carolina 27711

2. Department of Pathology, Duke University, Durham, North Carolina 27710

3. Center for Environmental Medicine and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599

Abstract

With the single exception of mercury, all metals in the atmosphere are associated with particles. The lungs are subsequently exposed to metals present in air pollution particles on a continuous basis. Because metal exposure can be associated with an oxidative stress, a mechanism that isolates the metal in a chemically less reactive form would be of benefit. We tested the hypothesis that the concentrations of both lactoferrin and ferritin in the rat lung increase after exposure to a metal-rich emission source air pollution particle. Using immunohistochemistry, we characterized changes in the concentrations of ferritin and lactoferrin after exposure of rats to an emission source air pollution particle. Lavage metal concentrations, measured by inductively coupled plasma emission spectroscopy, increased 4 hr after exposure to an oil fly ash. After exposure to this metal-rich emission source air pollution particle, ferritin concentrations in the lower respiratory tract increased. Comparable to the iron-storage protein, concentrations of both lactoferrin and transferrin were elevated after exposure. The greatest concentrations of ferritin, lactoferrin, and transferrin occurred at approximately 24 hr after exposure to the air pollution particle. Levels then decreased, and by 96 hr after instillation of the oil fly ash, ferritin, lactoferrin, and transferrin were not elevated relative to those animals exposed to saline. We conclude that, in response to an emission source air pollution particle with high concentrations of metals, there is an increase in ferritin, lactoferrin, and transferrin concentrations in the lungs of the host. The function of these increases in iron-binding proteins may be to control the oxidative stress associated with the exposure to metals.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3