Iron-Induced Myocardial and Hepatic Lysosomal Abnormalities in the Guinea Pig

Author:

Adams E. Terence1,Schwartz Kenneth A.2

Affiliation:

1. Hanard School of Public Health, Department of Environmental Health, Respiratory Biology Program, Boston, Massachusetts 02115

2. Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824

Abstract

The guinea pig model of iron overload, described in the preceding article, was used to investigate the mechanism of excess iron toxicity in hepatic and cardiac tissues. Effects of iron overload on both lysosomal membrane fragility and membrane peroxidation were studied. The free activity of selected myocardial and hepatic lysosomal enzymes, in addition to serum activity, was measured in guinea pigs treated with iron dextran (0.25, 0.5, 1.0, and 2.0 g Fe/kg body weight); controls received dextran. Levels of malondialdehyde were also determined in whole homogenates of heart and liver in animals loaded with 0.5 and 1.5 g Fe/kg of iron dextran. Results indicated that the free activity of hepatic glucosaminidase (p < 0.05) and β-glucuronidase ( p < 0.05) were significantly elevated at all levels of iron loading; hepatic acid phosphatase was increased at all but the lowest iron dose. Similarly, increased serum glucosaminidase activity was observed ( p < 0.01) at all dose levels. When compared to pooled controls, the free activity of myocardial glucosaminidase was also elevated ( p < 0.05) at all levels of loading. However, myocardial acid phosphatase was increased only at the highest iron dose ( p < 0.01). Increased malondialdehyde was measured at the high iron dose (1.5 g Fe/kg) in whole homogenates of both heart and liver ( p < 0.01). We conclude that iron loading in this model profoundly alters the stability of hepatic and myocardial lysosomal membranes; furthermore, changes in serum glucosaminidase activity may be reflective of modified tissue lysosomal properties. Elevated levels of malondialdehyde in whole homogenates suggest that iron-mediated lipid peroxidation may be responsible in part for enhanced lysosomal membrane fragility.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3