Deep Learning–Based Segmentation of Morphologically Distinct Rat Hippocampal Reactive Astrocytes After Trimethyltin Exposure

Author:

Vuorimaa Miika1ORCID,Kareinen Ilona1ORCID,Toivanen Petri1,Karlsson Stefan1ORCID,Ruohonen Saku1

Affiliation:

1. Orion Corporation, Turku, Finland

Abstract

As regulators of homeostasis, astrocytes undergo morphological changes after injury to limit the insult in central nervous system (CNS). Trimethyltin (TMT) is a known neurotoxicant that induces reactive astrogliosis in rat CNS. To evaluate the degree of reactive astrogliosis, the assessment relies on manual counting or semiquantitative scoring. We hypothesized that deep learning algorithm could be used to identify the grade of reactive astrogliosis in immunoperoxidase-stained sections in a quantitative manner. The astrocyte algorithm was created using a commercial supervised deep learning platform and the used training set consisted of 940 astrocytes manually annotated from hippocampus and cortex. Glial fibrillary acidic protein-labeled brain sections of rat TMT model were analyzed for astrocytes with the trained algorithm. Algorithm was able to count the number of individual cells, cell areas, and circumferences. The astrocyte algorithm identified astrocytes with varying sizes from immunostained sections with high confidence. Algorithm analysis data revealed a novel morphometric marker based on cell area and circumference. This marker correlated with the time-dependent progression of the neurotoxic profile of TMT. This study highlights the potential of using novel deep learning-based image analysis tools in neurotoxicity and pharmacology studies.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3