Recommended Methods for Brain Processing and Quantitative Analysis in Rodent Developmental Neurotoxicity Studies

Author:

Garman Robert H.1,Li Abby A.2,Kaufmann Wolfgang3,Auer Roland N.4,Bolon Brad5

Affiliation:

1. Consultants in Veterinary Pathology, Inc., Murrysville, Pennsylvania, USA

2. Exponent Inc., San Francisco, California, USA

3. Merck KGaA, Darmstadt, Germany

4. Hôpital Ste-Justine, Département de Pathologie, Université de Montréal, Québec, Canada

5. GEMpath Inc., Longmont, Colorado, USA

Abstract

Neuropathology methods in rodent developmental neurotoxicity (DNT) studies have evolved with experience and changing regulatory guidance. This article emphasizes principles and methods to promote more standardized DNT neuropathology evaluation, particularly procurement of highly homologous brain sections and collection of the most reproducible morphometric measurements. To minimize bias, brains from all animals at all dose levels should be processed from brain weighing through paraffin embedding at one time using a counterbalanced design. Morphometric measurements should be anchored by distinct neuroanatomic landmarks that can be identified reliably on the faced block or in unstained sections and which address the region-specific circuitry of the measured area. Common test article–related qualitative changes in the developing brain include abnormal cell numbers (yielding altered regional size), displaced cells (ectopia and heterotopia), and/or aberrant differentiation (indicated by defective myelination or synaptogenesis), but rarely glial or inflammatory reactions. Inclusion of digital images in the DNT pathology raw data provides confidence that the quantitative analysis was done on anatomically matched (i.e., highly homologous) sections. Interpreting DNT neuropathology data and their presumptive correlation with neurobehavioral data requires an integrative weight-of-evidence approach including consideration of maternal toxicity, body weight, brain weight, and the pattern of findings across brain regions, doses, sexes, and ages.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3