In Vitro Methods of Assessing Renal Damage

Author:

Lash Lawrence H.1

Affiliation:

1. Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan 48201-1928

Abstract

Freshly isolated and primary cultures of rat kidney cells derived from specific nephron segments can be useful in vitro models for studying processes such as drug metabolism, membrane transport, and biochemical mechanisms of chemically induced toxicity. Proximal tubular (PT) and distal tubular (DT) cells were isolated from rat renal cortex by collagenase perfusion and Percoll density-gradient centrifugation. Oxidants produced glutathione (GSH) oxidation and lipid peroxidation and were markedly more cytotoxic to DT cells than to PT cells. Similarly, alkylating agents that target soft nucleophiles such as GSH and protein sulfhydryls were more toxic to DT cells than to PT cells, whereas an alkylating agent that targets hard nucleophiles was equally cytotoxic in the 2 cell types. DT cells were also more sensitive to brief periods of oxygen deprivation and were markedly more susceptible to ATP depletion by treatment with iodoacetate and cyanide than were PT cells. Serum-free, hormonally defined conditions have been optimized for primary culture of rat renal PT and DT cells to maintain differentiated function for up to 9 days. Primary cultures exhibited similar susceptibilities as freshly isolated cells to acute injury from chemical toxicants and the cultures express several isoforms of cytochrome P-450. These studies show that freshly isolated and primary cultures of rat renal PT and DT cells can be used to study both short-term and long-term responses to toxic chemicals.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3