Mechanisms of Chemically Induced Renal Carcinogenesis in the Laboratory Rodent

Author:

Hard Gordon C.1

Affiliation:

1. American Health Foundation, Valhalla, New York 10595

Abstract

Laboratory studies with classical renal carcinogens in the rat and mouse, as well as research investigation with some of the chemicals proving positive for the kidney in National Toxicology Program carcinogenicity bioassays, have demonstrated the existence of a range of diverse mechanisms underlying rodent kidney carcinogenesis. The classical carcinogens used as experimental models for studying renal tumor pathogenesis, such as the nitrosamines, are genotoxic and interact directly with DNA, forming DNA adducts with mutagenic potential. In contrast, potassium bromate and ferric nitrilotriacetate (Fe-NTA), also effective renal carcinogens, appear to cause indirect damage to DNA mediated by oxidative stress. A number of nongenotoxic chemicals are associated with epigenetic renal tumor induction in rodents, and the activity of these tends to involve prolonged stimulation of cell proliferation throughout the duration of exposure. This mode of action reflects a sustained regenerative response, either due to direct chemical toxicity to the tubule cells, as with chloroform, or to indirect cytotoxicity associated with lysosomal overload, as in α2u-globulin accumulation in male rats resulting from the administration of such chemicals as d-limonene and tetrachloroethylene. The histopathologic nature of hydroquinone renal carcinogenesis suggests that an additional epigenetic pathway to renal tubule tumor formation in rats may be through chemical-mediated exacerbation of, and interaction with, the age-related spontaneous renal disease, chronic progressive nephropathy. These various mechanistic pathways have implications for the nature of the induced cancer process with respect to tumor incidence, latency, malignancy, and sex predisposition.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3