Metabolic Aspects of Cell Cycle Regulation in Normal and Cancer Cells

Author:

Olivotto Massimo1,Arcangeli Annarosa1,Caldini Riccardo1,Chevanne Marta1,Cipolleschi Maria G.1,Sbarba Persio Dello1

Affiliation:

1. Institute of General Pathology of the University of Florence, Viale G. B. Morgagni, 50, 50134 Firenze, Italy

Abstract

Several studies are reviewed dealing with the mechanisms which regulate the cell cycle progression in normal and cancer cells. Using Yoshida AH 130 ascites tumor cells, it has been found that the G1-S transition of these cells is impaired by specific inhibitors of the electron flow through the respiratory chain (antimycin A), although respiratory ATP can be replaced by glycolytic ATP. The above transition can be also inhibited by the addition of physiologic substrates, mainly pyruvate, by a mechanism which appears linked to a modification of the cellular redox state and can be totally reversed by adding adenine to the culture medium. Adenine equally removes the block produced by antimycin A, pointing out a respiration-linked step of purine metabolism restricting the cell recruitment into S. A substantial protection of this step against the inhibitory effects of pyruvate and antimycin A has been obtained by the addition of folate and tetrahydrofolate, suggesting that the respiration-linked limiting step of tumor cell cycling involves folate metabolism and its connection to purine synthesis. The biologic relevance of these findings is stressed by the fact that pyruvate addition also inhibits the proliferation of concanavalin A-stimulated lymphocytes as well as of bone marrow hemopoietic cells in the presence of colony-stimulating factors. On the other hand, pyruvate only slightly affects the growth kinetics of malignant lymphoblasts and of Friend erythroleukemia cells either in the absence or in the presence of the differentiation inducer dimethylsulfoxide.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Reference26 articles.

1. 1. Aisemberg AC (1961). The Glycolysis and Respiration of Tumors. Academic Press, New York, p. 196.

2. Growth Factors and Regulation of Cell Growth

3. 3. Arcangeli A (1984). Unpublished data.

4. Comparative studies of a near-tetraploid and a near-diploid line of Ehrlich's ascites tumor propagated in vivo and in vitro I. Metabolism and growth

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3