Studies on Chemically Induced Neoplastic Transformation and Mutation in the BALB/3T3 Cl A31-1-1 Cell Line in Relation to the Quantitative Evaluation of Carcinogens

Author:

Saffiotti Umberto1,Bignami Margherita1,Bertolero Federico1,Cortesi Enrico1,Ficorella Corrado1,Kaighn M. Edward1

Affiliation:

1. Laboratory of Experimental Pathology, National Cancer Institute, Frederick Cancer Research Facility, Frederick, Maryland 21701

Abstract

Mutagenesis and neoplastic transformation assays on mammalian cells in culture have been extensively used for quantitative estimates of the activity of carcinogens, in spite of the limitations that such in vitro systems have when compared with in vivo systems for tumor induction. In order to assess the validity of these correlations, a series of studies was undertaken in our laboratory with the BALB/3T3 Cl A31-1-1 mouse embryo cell line. Different carcinogens were found to induce dose-dependent frequencies of transformation, including the direct-acting alkylating agent N-methyI- N'-nitro- N-nitrosoguanidine (MNNG) and carcinogens that were metabolically activated by these cells through different pathways (benzo[a]pyrene, 3-methylcholanthrene, aflatoxin B1, and benzidine). Their respective level of activity on a molar basis was different from that obtained in standard Salmonella + S9 mutagenesis tests. Studies currently underway indicate the possibility of lowering the serum content in the medium considerably, thereby reducing a major variable in the assay. Methods were established for the induction of ouabain-resistant (ouar) mutants in these cells. Studies were conducted by applying 30-min MNNG exposures to cells that were synchronized by serum deprivation followed by serum-induced release from growth block. While maximal induction of mutants occurred in the S phase, the transformation frequency remained constant for treatments in G1 and early or late S. In subsequent studies, cytotoxicity, alkali-labile DNA lesions, ouar mutations, and neoplastic transformation were analyzed concurrently in this cell line after cells were exposed to two concentrations of MNNG and the exposures were protracted for different time periods (30, 60, 90, 120, and 240 min; 24, 48, and 72 hr). A marked temporal dissociation was found in the exposure times required to induce maximal frequencies of mutations and of transformation. Cytotoxicity increased for periods up to 100-200 min; mutations reached a maximal induction level after a much shorter exposure time (30-60 min); DNA damage detected by alkaline elution was already maximal by 30 min. Transformation frequencies, however, reached maximal levels only after exposure periods 1-3 hr longer than those required for maximal mutation. The ratio of transformation to ouar mutation frequencies was 3.7 for short treatment times (30-60 min), but it increased to more than 20 for exposure times of 240 min or longer. These studies support the hypothesis that a single gene mutational event is not sufficient to account for the expression of neoplastic transformation.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3