Artificial Intelligence in Toxicological Pathology: Quantitative Evaluation of Compound-Induced Follicular Cell Hypertrophy in Rat Thyroid Gland Using Deep Learning Models

Author:

Bertani Valeria1ORCID,Blanck Olivier2,Guignard Davy2ORCID,Schorsch Frederic2,Pischon Hannah3

Affiliation:

1. AstraZeneca Computational Pathology GmbH, Munich, Germany

2. Bayer CropScience SAS, Sophia Antipolis, Valbonne, France

3. Nuvisan ICB GmbH, Berlin, Germany

Abstract

Digital pathology has recently been more broadly deployed, fueling artificial intelligence (AI) application development and more systematic use of image analysis. Here, two different AI models were developed to evaluate follicular cell hypertrophy in hematoxylin and eosin-stained whole-slide-images of rat thyroid gland, using commercial AI-based-software. In the first, mean cytoplasmic area measuring approach (MCA approach), mean cytoplasmic area was calculated via several sequential deep learning (DL)-based algorithms including segmentation in microanatomical structures (separation of colloid and stroma from thyroid follicular epithelium), nuclear detection, and area measurements. With our additional second, hypertrophy area fraction predicting approach (HAF approach), we present for the first time DL-based direct detection of the histopathological change follicular cell hypertrophy in the thyroid gland with similar results. For multiple studies, increased output parameters (mean cytoplasmic area and hypertrophic area fraction) were shown in groups given different hypertrophy-inducing reference compounds in comparison to control groups. Quantitative results correlated with the gold standard of board-certified veterinary pathologists’ diagnoses and gradings as well as thyroid hormone dependent gene expressions. Accuracy and repeatability of diagnoses and grading by pathologists are expected to be improved by additional evaluation of mean cytoplasmic area or direct detection of hypertrophy, combined with standard histopathological observations.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3