Ultrastructural Juxtaglomerular Cell Changes in Normotensive Rats Treated with Quinapril, an Inhibitor of Angiotensin-Converting Enzyme

Author:

Dominick Mark A.1,Bobrowski Walter F.1,Mvetz Alan L.1,Gough Alec W.1,MacDonald John R.1

Affiliation:

1. Department of Pathology and Experimental Toxicology, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Co., Ann Arbor, Michigan 48105

Abstract

Sequential histologic and ultrastructural changes in juxtaglomerular apparatus (JGA) were defined in male rats treated with quinapril, an inhibitor of angiotensin-converting enzyme (ACE). Doses of 0, 10, 100, and 400 mg/kg were administered daily by gavage for up to 4 weeks. Granular juxtaglomerular (JG) cells were normal or hypogranular on Day 1 at all doses and were hypergranular by Day 7 in rats given 100 and 400 mg/kg relative to age-matched controls. Histologically, JGA hypertrophy was apparent by Day 7 at all doses and was most pronounced by Day 14 in intermediate and deep cortical zones of rats given 100 and 400 mg/kg. Ultrastructurally, hypertrophic JG cells had abundant rough endoplasmic reticulum and free ribosomes, and prominent Golgi complexes associated with numerous cytoplasmic coated vesicles. Dose-dependent increases in numbers of protogranules, altered granules, and cytoplasmic vacuoles occurred in association with decreased size and increased pleomorphism of mature secretory granules. Granule alterations included vesicular to lamellar membranous matrical inclusions, irregular patterns of osmiophilia, matrical vacuolation, and flocculent to coarsely granular matrix of greater density than mature granules. We concluded that JG cell hypertrophy and hyperplasia occurred rapidly in response to subchronic ACE inhibition. Further, ultra-structural changes in JG cells were indicative of stimulated renin synthesis by a regulated pathway, renin secretion by exocytosis and cytoplasmic solubilization of granules, and autophagy of granules as a mechanism whereby JG cells regulate levels of stored renin under conditions of excessive stimulation.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3