Comparison of Histochemical Methods for Murine Eosinophil Detection in an RSV Vaccine-enhanced Inflammation Model

Author:

Meyerholz David K.1,Griffin Michelle A.1,Castilow Elaine M.2,Varga Steven M.23

Affiliation:

1. Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City

2. Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City

3. Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City

Abstract

A comparative study of histochemical detection of eosinophils in fixed murine tissue is lacking. Five histochemical methods previously reported for eosinophil detection were quantitatively and qualitatively compared in an established murine RSV vaccine–enhanced inflammation model. Nonspecific neutrophil staining was evaluated in tissue sections of neutrophilic soft tissue lesions and bone marrow from respective animals. Eosinophils had granular red to orange-red cytoplasmic staining, depending on the method, whereas neutrophils had, when stained, a more homogenous cytoplasmic pattern. Nonspecific background staining of similar coloration was variably seen in vascular walls and erythrocytes. Astra Blue/Vital New Red, Congo Red, Luna, Modified Hematoxylin and Eosin, and Sirius Red techniques were all effective in detecting increased eosinophil recruitment compared to controls; however, differences in eosinophil quantification varied significantly between techniques. Astra Blue/Vital New Red had the best specificity for differentiating eosinophils and neutrophils but had a reduced ability to enumerate eosinophils and was the most time intensive. The Luna stain had excessive nonspecific staining of tissues and a reduced enumeration of infiltrating eosinophils, which made it suboptimal. For multiple parameters such as eosinophil detection, specificity, and contrast with background tissues, the Sirius Red followed by Congo Red and Modified Hematoxylin and Eosin methods were useful, each with their own staining qualities.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3