PDGFR Inhibition Results in Pericyte Depletion and Hemorrhage into the Corpus Luteum of the Rat Ovary

Author:

Hall Anthony P.1,Ashton Susan2,Horner Judith1,Wilson Zena2,Reens Jaimini1,Richmond Graham H. P.2,Barry Simon T.2,Wedge Steve R.2

Affiliation:

1. AstraZeneca, Drug Safety and Metabolism, Alderley Park, Macclesfield, Cheshire, UK

2. AstraZeneca, Oncology iMed, Alderley Park, Macclesfield, Cheshire, UK

Abstract

The growth plate, ovary, adrenal gland, and rodent incisor tooth are sentinel organs for antiangiogenic effects since they respond reliably, quantitatively, and sensitively to inhibition of the vascular endothelial growth factor receptor (VEGFR). Here we report that treatment of rats with platelet-derived growth factor receptor beta (PDGFRβ) inhibitors that target pericytes results in severe ovarian hemorrhage with degeneration and eventual rupture of the corpus luteum. Evaluation of the growth plate, adrenal gland, and incisor tooth that are typical target organs for antiangiogenic treatment in the rodent revealed no abnormalities. Histologically, the changes in the ovary were characterized by sinusoidal dilatation, increased vessel fragility, and hemorrhage into the corpus luteum. Immunocytochemical staining of vessels with alpha smooth muscle actin and CD31 that recognize pericytes and vascular endothelium, respectively, demonstrated that this effect was due to selective pericyte deficiency within corpora lutea. Further experiments in which rats were treated concurrently with both PDGFRβ and VEGFR inhibitors ablated the hemorrhagic response, resulting instead in corpus luteum necrosis. These changes are consistent with the notion that selective pericyte loss in the primitive capillary network resulted in increased vessel fragility and hemorrhage, whereas concomitant VEGFR inhibition resulted in vessel regression and reduced vascular perfusion that restricted development of the hemorrhagic vessels. These results also highlight the utility of the rodent ovary to respond differentially to VEGFR and PDGFR inhibitors, which may provide useful information during routine safety assessment for determining target organ toxicity.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3