Affiliation:
1. Clear River Enviro, Inc., Sugar Land, TX, USA
2. University of Texas MD Anderson Cancer Center, Houston, TX, USA
3. University of Texas Health Science Center, Houston, TX, USA
Abstract
Purpose: To assess chemical degradation of various liquid chemotherapy and opioid drugs in the novel RxDestruct™ instrument. Methods: Intravenous (IV) drug solutions for chemotherapy and pain management were prepared using 0.9% normal saline in Excel® bags to a final volume of 500 mL. We investigated duplicate IV solutions of methotrexate (0.1 mg/mL), etoposide (0.4 mg/mL), doxorubicin (0.25 mg/mL), cladribine (12.4 µg/mL), fentanyl (1.0 µg/mL), and hydromorphone (12.0 µg/mL) in this study. Solutions were poured into an automated instrument to undergo pulsatile chemical treatment (Fenton reactions) for 20 minutes, and then discharged from the instrument through a waste outlet. Extent of intact drug degradation was determined by measuring concentrations of drugs before entry into the instrument and after chemical treatment in the filtrate using high-performance liquid-chromatography with ultraviolet detection (HPLC-UV). Results: Following chemical reactions (Fenton processes) in the automated instrument, infusion solutions containing methotrexate, etoposide, doxorubicin, and cladribine had levels below the HPLC-UV limit of quantification (LOQ), indicating <50 ppb of each. This equated to >99.5%, 99.99%, 99.9%, and 99.8% intact drug loss, respectively. Likewise, processed samples of fentanyl and hydromorphone contained levels below the LOQ (78 and 98 ng/mL, respectively), indicating extensive degradation (>92.2% and 99.2% intact drug loss, respectively). Conclusion: The novel instrument was capable of degrading intact chemotherapy and opioid drugs prepared in infusion solutions to undetectable quantities by HPLC-UV. RxDestruct™ is a possible alternative for disposal of aqueous medication waste.
Funder
Clear River Enviro, Inc.
university of texas md anderson cancer center
Subject
Pharmacology (medical),Pharmacology,Pharmacy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献