Previously undescribed vitamin D C-3 epimer occurs in substantial amounts in the blood of cats

Author:

Sprinkle Megan C1,Hooper Sarah E2,Backus Robert C1

Affiliation:

1. Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA

2. Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA

Abstract

Objectives The aim of this report is to describe the identification of a novel vitamin D metabolite, a C-3, alpha-epimer of 25-hydroxycholecalciferol (3-epi-25(OH)D3), in serum and plasma extracts of cat blood and compare its abundance in cat, dog and rat serum to 25-hydroxycholecalciferol (25(OH)D3), a conventional marker of vitamin D status. Methods Serum 25(OH)D3 and 3-epi-25(OH)D3 concentrations were measured in healthy cohorts of cats (n = 8), dogs (n = 8) and rats (n = 17) using validated reverse and normal-phase high-performance liquid chromatography methods. The methods were verified using liquid chromatography tandem mass spectrophotometry. Dietary intake and dietary concentrations of vitamin D were also measured for evaluation of species differences and effect of dietary change on vitamin D metabolite concentrations. Differences between cat serum and plasma metabolite concentrations were determined. Results Detectable concentrations of 3-epi-25(OH)D3 were observed in all cats and rats. No 3-epi-25(OH)D3 was detected in dogs, where our limit of detection was 5 ng/ml. There were significant differences ( P <0.05) in serum concentrations of 25(OH)D3 and 3-epi-25(OH)D3 among species, with cats having the greatest concentrations of both metabolites. Serum and plasma results were not significantly different. A diet change, which resulted in an increase in vitamin D intake among the cats, affected serum concentration with an increase ( P = 0.004) in 3-epi-25(OH)D3 but no significant change in 25(OH)D3. Conclusions and relevance Serum and plasma of cats contain 3-epi-25(OH)D3 in varied and extraordinary concentrations, much greater than in rats and certainly than that of dogs, a species for which the metabolite was not detected. Importantly, this finding indicates a C-3 epimerization pathway is quantitatively significant for vitamin D metabolism in domestic cats, making 3-epi-25(OH)D3 assays essential for the evaluation of vitamin D status in cats and positioning the cat as a novel model for study of this pathway.

Funder

Nestle Purina Endowment for Small Animal Nutrition at the University of Missouri

Phi Zeta Veterinary Honor Society at the University of Missouri

Publisher

SAGE Publications

Subject

Small Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3