The centrality of working memory networks in differentiating bipolar type I depression from unipolar depression: A task-fMRI study

Author:

Xi Chang12,Liu Zhening12,Zeng Can12,Tan Wenjian12,Sun Fuping12,Yang Jie12ORCID,Palaniyappan Lena34

Affiliation:

1. Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China

2. National Clinical Research Center for Mental Disorders, Changsha, China

3. Robarts Research Institute, Western University, London, Canada

4. Departments of Psychiatry and Medical Biophysics, Schulich School of Medicine, Western University, London, Canada

Abstract

Objectives Up to 70%–80% of patients with bipolar disorder are misdiagnosed as having major depressive disorder (MDD), leading to both delayed intervention and worsening disability. Differences in the cognitive neurophysiology may serve to distinguish between the depressive phase of type 1 bipolar disorder (BDD-I) from MDD, though this remains to be demonstrated. To this end, we investigate the discriminatory signal in the topological organization of the functional connectome during a working memory (WM) task in BDD-I and MDD, as a candidate identification approach. Methods We calculated and compared the degree centrality (DC) at the whole-brain voxel-wise level in 31 patients with BDD-I, 35 patients with MDD, and 80 healthy controls (HCs) during an n-back task. We further extracted the distinct DC patterns in the two patient groups under different WM loads and used machine learning approaches to determine the distinguishing ability of the DC map. Results Patients with BDD-I had lower accuracy and longer reaction time (RT) than HCs at high WM loads. BDD-I is characterized by decreased DC in the default mode network (DMN) and the sensorimotor network (SMN) when facing high WM load. In contrast, MDD is characterized by increased DC in the DMN during high WM load. Higher WM load resulted in better classification performance, with the distinct aberrant DC maps under 2-back load discriminating the two disorders with 90.91% accuracy. Conclusions The distributed brain connectivity during high WM load provides novel insights into the neurophysiological mechanisms underlying cognitive impairment of depression. This could potentially distinguish BDD-I from MDD if replicated in future large-scale evaluations of first-episode depression with longitudinal confirmation of diagnostic transition.

Funder

National Natural Science Foundation of China

the Natural Science Foundation of Hunan Province, China

Publisher

SAGE Publications

Subject

Psychiatry and Mental health

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3