Using Machine Learning to Predict Remission in Patients With Major Depressive Disorder Treated With Desvenlafaxine

Author:

Benoit James R.A.1ORCID,Dursun Serdar M.2,Greiner Russell23,Cao Bo2,Brown Matthew R.G.3,Lam Raymond W.4ORCID,Greenshaw Andrew J.2

Affiliation:

1. Faculty of Nursing, University of Alberta, Edmonton, Alberta

2. Department of Psychiatry, University of Alberta, Edmonton, Alberta

3. Department of Computing Science, University of Alberta, Edmonton, Alberta

4. Department of Psychiatry, University of British Columbia, Vancouver, British Columbia

Abstract

Background Major depressive disorder (MDD) is a common and burdensome condition that has low rates of treatment success for each individual treatment. This means that many patients require several medication switches to achieve remission; selecting an effective antidepressant is typically a sequential trial-and-error process. Machine learning techniques may be able to learn models that can predict whether a specific patient will respond to a given treatment, before it is administered. This study uses baseline clinical data to create a machine-learned model that accurately predicts remission status for a patient after desvenlafaxine (DVS) treatment. Methods We applied machine learning algorithms to data from 3,399 MDD patients (90% of the 3,776 subjects in 11 phase-III/IV clinical trials, each described using 92 features), to produce a model that uses 26 of these features to predict symptom remission, defined as an 8-week Hamilton Depression Rating Scale score of 7 or below. We evaluated that learned model on the remaining held-out 10% of the data ( n = 377). Results Our resulting classifier, a trained linear support vector machine, had a holdout set accuracy of 69.0%, significantly greater than the probability of classifying a patient correctly by chance. We demonstrate that this learning process is stable by repeatedly sampling part of the training dataset and running the learner on this sample, then evaluating the learned model on the held-out instances of the training set; these runs had an average accuracy of 67.0% ± 1.8%. Conclusions Our model, based on 26 clinical features, proved sufficient to predict DVS remission significantly better than chance. This may allow more accurate use of DVS without waiting 8 weeks to determine treatment outcome, and may serve as a first step toward changing psychiatric care by incorporating clinical assistive technologies using machine-learned models.

Publisher

SAGE Publications

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3