A Review of Evidence Linking Disrupted Neural Plasticity to Schizophrenia

Author:

Voineskos Daphne1,Rogasch Nigel C2,Rajji Tarek K3,Fitzgerald Paul B4,Daskalakis Zafiris J5

Affiliation:

1. Resident in Psychiatry, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ontario

2. Student, Monash Alfred Psychiatry Research Centre, Alfred and Monash University School of Psychology, Psychiatry and Psychological Medicine, Commercial Road, Melbourne, Australia

3. Assistant Professor of Psychiatry, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ontario

4. Professor of Psychiatry, Monash Alfred Psychiatry Research Centre, Alfred and Monash University School of Psychology, Psychiatry and Psychological Medicine, Commercial Road, Melbourne, Australia

5. Associate Professor of Psychiatry, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ontario

Abstract

The adaptations resulting from neural plasticity lead to changes in cognition and behaviour, which are strengthened through repeated exposure to the novel environment or stimulus. Learning and memory have been hypothesized to occur through modifications of the strength of neural circuits, particularly in the hippocampus and cortex. Cognitive deficits, specifically in executive functioning and negative symptoms, may be a corollary to deficits in neural plasticity. Moreover, the main excitatory and inhibitory neurotransmitters associated with neural plasticity have also been extensively investigated for their role in the cognitive deficits associated with schizophrenia. Transcranial magnetic stimulation (TMS) represents some of the most promising approaches to directly explore the physiological manifestations of neural plasticity in the human brain. Three TMS paradigms (use-dependent plasticity, paired associative stimulation, and repetitive TMS) have been used to evaluate neurophysiological measures of neural plasticity in the healthy brain and in patients with schizophrenia, and to examine the brain's responses to such stimulation. In schizophrenia, deficits in neural plasticity have been consistently shown which parallel the molecular evidence appearing to be entwined with this debilitating disorder. Such pathophysiology may underlie the learning and memory deficits that are key symptoms of this disorder and may even be a key mechanism involved in treatment with antipsychotics.

Publisher

SAGE Publications

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3